

T FI_UX:ID	MAX STATIC PRESSURE (inch/H2O)	MAX CFM	HP	VOLTS	Hz	IMPELLER	INLET
	16.8	4030	10	220/440	60	Φ 18 ½"	Φ12"

	RESTRICTOR PLATE (inch)	DIA. 12"	DIA. 10"	DIA. 9"	DIA. 8"	DIA. 7"	DIA. 6"	DIA. 5"	DIA. 0"
TIFI_UX:ID	STATIC PRESSURE (inch/H2O)	2.51	3.61	5.2	7.31	10.2	12.81	14.61	168
	CFM	4030	3635	3322	3119	2707	2232	1391	-
	VELOCITY	1.642	1.336	1.16	0.984	0.742	0.504	0.196	-

*HOW WE OBTAIN OUR READINGS

- Testing based on new, clean filter. Results will vary depending on use.
- The inlet on t|flux:10 is 12"
- A flex hose 16 X longer than inlet diameter is attached 12 x 16 = 192"
- Air pressure meter measures the velocity & static pressure is inserted into this hose at halfway point = 96"
- The Air Pressure Meter measures in Inches of Water
- The CFM is measured with 12" opening at end of hose, no restrictions, 96" from inlet.
- The Max. Static pressure is measured when the restrictor plate at end of hose is closed (0) 96" from inlet.
- Air pressure meter measures the velocity and static pressure in inches of water
- CFM is calculated in the following manner:
- Square root of Velocity in inches of water x cross sectional area of cyclonic inlet in square feet x 4005
- Calculate cross sectional area of cyclonic inlet in square feet:

12"/12 = 1.00ft 1.00/2 = 0.50ft $0.50 \times 0.50 \times 3.1416 = 0.7854$ ft²

Formula: $\sqrt{1.642}$ inch of water x 0.7854 ft² x 4005 = 4030CFM (website states 4030CFM; this calculated value will slightly vary due to the rounded off values derived from the above formula)