
13 FI_UX	MAX STATIC PRESSURE (inch/H2O)	MAX CFM	HP	VOLTS	Hz	IMPELLER	INLET
	4.86	550	1	115	60	Ф 9 "	Φ 4 "

	RESTRICTOR PLATE (inch)	DIA. 4"	DIA. 3½"	DIA. 3"	DIA. 2"	DIA. 0"
BIFILUX	STATIC PRESSURE (inch/H2O)	3.21	4.14	4.8	4.9	4.86
	CFM	550	5.07	362	143	0
	VELOCITY	2.476	2.11	1.07	0.17	0

*HOW WE OBTAIN OUR READINGS

- Testing based on new, clean filter. Results will vary depending on use.
- The inlet on b|flux:1 is 4"
- A flex hose 16 X longer than inlet diameter is attached 4 x 16 = 64"
- Air pressure meter measures the velocity & static pressure is inserted into this hose at halfway point = 32"
- The Air Pressure Meter measures in Inches of Water
- The CFM is measured with 4" opening at end of hose, no restrictions, 32" from inlet
- The Max. Static pressure is measured when the restrictor plate at end of hose is closed (0) 32" from inlet
- Air pressure meter measures the velocity and static pressure in inches of water
- CFM is calculated in the following manner:
- Square root of Velocity in inches of water x cross sectional area of cyclonic inlet in square feet x 4005
- Calculate cross sectional area of cyclonic inlet in square feet:
 - 4"/12 = 0.3ft 0.3/2 = 0.166ft $0.166 \times 0.166 \times 3.1416 = 0.0866 ft^2$

Formula: $\sqrt{2.476}$ inch of water x 0.0866 ft² x 4005 = 545CFM (website states 550CFM; this calculated value will slightly vary due to the rounded off values derived from the above formula)